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This work was performed under Contract No. DAAK--11-M-0008, Development
. of Methods of Evaluating Extensional Properties of Polymer Solutions from
Measurements of Shear. The work was started in April 1982 and completed
in April 1983.

The use of trade names in this report does not constitute an official
endorsement or approval of the use of such commercial hardware or software.

This report may not be cited for purposes of advertisement.

Reproduction of this document in whole or in part is prohibited except
with the permission of the Commander, Chemical Systems Laboratory, ATTN:
DRDAR-CLJ-IR, Aberdeen Proving Ground, Maryland 21010. However, the

Defense Technical Information Center and the National Technical Informa-

tion Service are authorized to reproduce the document for US Government purposes.

This report has been approved for release to the oublic.
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DEVELOPMENT OF METHODS OF EVALUATING EXTENSIONAL PROPERTIES OF POLYMER
SOLUTIONS FROM MEASUREMENTS OF SHEAR

1. INTRODUCTION

large extensional flow components occur in many important tech-
nological processes of liquids. In general, any processing of a liquid
using converging or diverging flow will correlate with some extensional
properties of the material. On the other hand, most instruments for es-
tablishing the rheology of liquids are based upon measurements of simple
shearing flows. The few intruments which measure extensional properties
of liquids are designed to handle only the thickest of liquids such as
polymer melts suitable for spinning into zynthetic fibers. There are
serious obstacles to adapting these devices to measure polymer solutions.
It would be a valuable achievement, theirefore, to find a technique of
inferring the extensional mechanical properties of polymeric fluids from
measurements of shear. We report here a preliminary exploration of the
possibility of one such technique to be applied to polymeric solutions

of moderate concentration.

There is no purely geometrical relation between the shear
properties of a material and the extensional properties. To make a
connection, some sort of constitutive conditions must be invoked. For
polymeric materials, it is known that realistic constitutive equations
are of the hereditary type, that is, the state of stress in the material
is taken to depend on the whole history of the deformation of the material.
Among the possible hereditary constitytive equations, in recent years the
BKZ model 1223
polymers and polymer solutions. As will be explained in the next section,

has proved the most effective in dealing with amorphous

the BKZ model has the interesting property that stress relaxation measure-
ments are sufficient to determine the complete mechanical behavior of the
material being modelled. Furthermore, isochrones of these stress relaxation
measurements have a mathematical character identical with that of a strain
energy function of an elastic medium. Indeed, the BKZ model can be used

to describe both the entropic elastic mechanism which is the source of
rubber elasticity and the mechanisms producing viscous losses in fluids.




This fact underlies the success of the model in dealing with the mechanics
of polymeric materials. It is the physics of the entropic mechanism which
suggests a connection between shear and extension. Recent work in rubber
elasticity has shown that the entropy of deformation is, to a remarkable
degree, a superposition of effects from individual principal stretches
without cross terms.* Incorporating this idea with the BKZ model allows
one to relate the mechanics of extension to the measurements in shear.
These matters are discussed in the following section.

The most direct method of applying these theoretical ideas is
through stress relaxation measurements in shear. Measurement of stress
relaxation of fluids poses certain practical difficulties which limit
the range of concentration for which it was possible to obtain good data
on solutions. One of the important results of this work is the elucidation
of these limitations. The experimental details of the measurement of
stress relaxation for five different solutions are given in Section 3.
Section 4 discusses the numerical treatment of the measurements. It
was found that a very careful and elaborate smoothing of the raw data
is necessary in calculating accurate and reliable values of a material
function. This process is crucial to the success of this technique.

It is illustrated for one sample in Section Uu.

Section 5 lists some conclusions and recommendations for
continuing work which arose out of this preliminary study.
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2. THEORETICAL BASIS

The BKZ modell was proposed almost 20 years ago to model non-
linear, time-dependent viscoelastic behavior of materials such as elasto-
mers, polymer melts and solutions. Since that time, it has proved to be
a practical and accurate model for a wide range of materials and deforma-
tion histories. In the case of isothermal flows of homogeneous incompres-

sible fluids, the model may be summarized in the following equation.3
t

Uij - _pdij + ZI[UI( B(t,T),t-T ) Bij —U2( B(t,t),t-7 ) B;; 1 dt
0o (1)

I= trB, IT= trB !,det B=l

where %13 is a component of true stress, p is an arbitrary scalar
pressure, I and IT are the first and second scalar invariants of B.

1 1is a variable of integration which as the significance of time in the
past with respect to the present time t , ?ij is a component of B ,
the left relative Cauchy-Green tensor and sz is a component of its in-
verse. In this equation U is a scalar function of time and of the
scalar invariants* I and II respectively. Note that B and thus
I and II are calculated from the deformation which maps the configura-
tion at time Tt in the past into the configuration at the present time
t and therefore they are implicit functions of these times. The function
of U 1is constitutive, that is, it carries a complete description of the
mechanical behavior unique to the material it represents and, therefore,
it must be measured for each material for which we wish to apply the model.
When, for any material, U is completely known as a function of the three
dependent variables of the deformation history (I, II and T ) the me-
chanical behavior of the material is completely specified. U has the
character of a time-dependent free-energy.

Stress relaxation experiments play a very fundamental role in
' BKZ theory. The information carried by the constitutive function U
may also be expressed in terms of siress-relaxation functions. Let UsR(B,T)
represent the stress relaxation function, that is, the residual stress

in a specimen at a time t after being subjected to

* Any scalar function of the tensor B is equal to a function of the

scalar invariants of B .
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and held at a deformation (represented by tensor B) from a stress-

k:. free relaxed state. Then, equation (1) may be re-written in terms

of this stress relaxation function as follows

' ¢

t
o(t) = -pl +f OSR(B(t,T),t—r) dt (2)
- 00

[y
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This equation says that the stress in a material at a time with any

history of deformation is a superposition of stress relaxatior func-
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tions for deformations representing the change in configuration from
times in the past to the present and for relaxation times of the cor-
responding time interval. In other words, one can completely specify

)

the mechanical behavior of a material by measuring the stress-relaxation

'.":." v,
e

A function USR(B,T) for all the deformations B and all time inter-
vals Tt
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The stress relaxation function, considered as a function
of deformation but at a fixed relaxation time is known as an isochrone.
An isochrone of a BKZ material has the character of a strain energy
function of finite elasticity theory. One can view the characterization
of the mechanical properties of a BKZ material as the specification
of a time-dependent elastic strain energy function corresponding to
a complete set of isochrones of all stress-relaxation functions. Thus,

the ideas and theorems of finite elasticity theory can be applied.

In finite elasticity theory, the properties of a material are
given by a strain energy function. In the general case, when the strain
energy function is not specified further, the behavior of the material
in extensional deformations cannot be inferred from its behavior in shear.
Recently, Valanis and Landel” have proposed a special form of elastic
strain energy function which they showed to model accurately the behavior

of elastic materials such as natural rubber and other elastomers. The

Valanis-Landel form of elastic strain energy function carries the cons- .
titutive information on the elastic behavior of a material in the form

of a simple scalar function of one variable. This function can be

evaluated either from shear measurements5 or from extensional measure-

5,6

ments Consequently, in the case of a Valanis-lLandel elastic material

10
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the behavior in extension can be inferred from the behavior in shear.
In Valanis-Landel elasticity, the strain energy function of finite elas-
ticity W is given as follows:

W=w(d) +w) +w)
(3)
Apv = 1
where w(1) 1s the constitutive function (we shall call the V-L function)
and A,u,v are stretches in the three principal directions of the defor-
mation at a point. The second of the equations expresses the fact that
the material can be considered incompressible.

To produce simple torsion in a right circular cylinder of an
incompressible isotropic elastic material, it has been shown that a tor-
sional moment T must be applied to the ends of the sample7:

R 3
T = Anw[(wlwz) r- dr W)

and in addition a normal force, N , must be applied parallel to the axis
of the cylinder.

2 [} 3
N = =2my -/‘; (W1+2W2) r- dr (5)
Here ¥ is the angle of twist per unit length, R 1is the radius of the
cylinder, Wl and w2 are partial derivatives of the strain energy
density function with respect to the first and second invariants of the
deformation tensor. When these equations are put in terms of the V-L
function they become
R 2
1=y [ WO - 1AW am]

(6)
o (A -1)

2 22 2 2 3
N = —mpf N (A7=2) w'() - @2A%-1) 1/x w'(1/2)] £ dr
o (-1 (x'-1) 7)

11
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Sy where X 1is a principal stretch greater than unity given as
' a function of radius by

A(r) = %((w2r2+4)!5+wr) (8)

These equations are to be used to evaluate Aw'(}) for the elas-
tic material. To proceed, it is necessary to find a method of calcul-
ating values at a point from values integrated over the cross section
of the cylinder. The procedure of Kearsley and Penn8 will accomplish
this. Using this procedure and taking derivatives of equations (6)
and (7) we obtain

4
1 A -1
(A - 1AW (AA) = —== (3THT ) (9)
aw' (X)) /I w ;;;;Z 2 v

1 (Az-l)(AA-l)

WW2R4 AZ

02=2) w'(0) - (222-1) 1/x W (1/2) = - (24N (20)

where T, and NW are the slopes of plots (isochrones) of shear stress
and normal stress, respectively, versus the twist. Equations (9) and (10)
can be solved for aw'()) andl/iw'(1/M)for each value of A , where

A = %((w2R2+4)5+ YR) (11)

These equations (9), (10) and (11) can be used to evaluate

aw' (D) from data on torque and normal force as a function of twist. !
When w'(}) is known for all ) , the strain energy function can be .
constructed.

When the V-L function is measured for all relevant values of
A by this method (or any other method), the elastic response can be
calculated for any deformation. For example, if a strand of material of
initial cross-section Ao is stretched to A times its unstretched
. length, the force F -required is given by

F=20. 20 gy - 07 (12)

Similarly, if a square sheet of initial thickness t and unstretched
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o side L 1is stretched biaxially to a larger square of side AL, the forces
:_" F acting on each side are give by

N

_ F = % = L}‘t- (w'()) - A'zw'(x’z)) (13)

A

'.;j Thus the extensional properties of an elastic material of the Valanis-

RS Landel type can be measured from experiments on torsion.

In modelling a polymer solution as a BKZ fluid, we take the

" ' isochrones of stress relaxation to correspond to an elastic strain energy
of the Valanis-Landel type. Then stress relaxation experiments in tor-
- sion may be used as shown above to calculate a V-L function for each

3 - isochrone. In this way, we find a function Aw'(A,t) of two variables
(stretch and time) which completely characterizes the non-linear time

-::j dependent behavior of the solution. For instance, in extension of a

.‘ strand of solution, in light of equation (12) for an elastic material,
we can write for the viscoelastic polymer solution

s. F-(t) = A(t)ft[xw'(x,t—r) - A—I/"w'(k_;ﬁ, t-1)] dt

:: 1w)

e A = L(t)/L(A)

:. where F(t) is the force at time t extending the strand, L (t)

is the length of the strand at time t and A(t) is the cross sectional
-::j area of the strand at time t. To use this equation, the history of
the length of the strand is observed from an equilibrium rest position
up to time t. This information is then used in equation (14) to cal-

, culate force. We could also have written down the obvious generalization
E of equation (13) to apply to homogeneous biaxial stretching of a sheet

B =% of viscoelastic material. In fact, we can write such equations for any
~ deformation history. The important point in this model is that the

\: V-L function measured from experiments on torsion as a function of two

:".: variables (stretch and time) contains all the constitutive information

> necessary to determine the stress for any deformation history of the

s material .

-

=

® 12

) .,;‘

2

;

X

»

BRI TP S SR - - -t e T T T T T PG
PR ICRIR . S n e e e e e e e e T e e T
A mt at A m L et A N Y e N e e e e T e e e e e e e e e e,




e arane- e St AP S AT AR AL SRSU R NI LI R R S
. e At . T . - e . - - - - - - - - -

3. EXPERIMENTAL

N
\
<
)
.

-
l'.
:

3.1 Fquipment

Stress relaxation data in torsion was measured with a Rheo-
metrics Mechanical Spectrometer RMS-7200. In general the calibration
procedures followed were those given in the operation manual. However,
it was found that the angular position of the torsion head was not a
linear function of the applied voltage. Consequently, a technique was
; worked out to calibrate postion at small angles (t 100) by observing
. the deflection on a scale attached to the wall of the laboratory of a
spot of light reflected from a mirror fixed on the torsion head. For
larger angles, calibration was done directly with a pointer attached

Sl

‘- '-‘ '-"'.' .

® .
s 8

‘ s
.
. -

to the torsion head reading against a centimeter scale wrapped around
a fixed cylinder.

The torsion was achieved between circular plates of 7.22 cm.
diameter. The lower plate had a relief well and outer retaining wall
to keep extruded material from dripping. As mentioned in the section
on procedures, this extruded material was probably the cause of the
most serious errors in measurement.

As one check on the operation of the Rheometrics, steady
state viscosity of a standard viscosity oil (OB oil, 267 poise at
23.50 C) was measured and found to be correct to within better than
5%. Since temperature was not controlled, this accuracy was considered

to be adequate for our purposes.

3.2 Solutions

!
g
y

Data was run on solutions of polymethylmethacrylate (PMMA, S-5522)
and of Elvacite in diethyl malonate (DEM). The concentrations used were
determined by the practical requirements of the Rheometrics measuring

device. 1f the solution was too dilute, the forces generated during defor-

R TR

‘mation were too small to allow accurate data. On the other hand, if solu-
tions were too concentrated, it became impractical to load the solution
into the proper cylindrical space for measurement without introducing signi-
ficant air bubbles into the samples. The usable range of concentrations had i
to be established by trial and error tor each polymer. For PMMA .
14
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this range was from about 4% to 6% and for the Flvacite it was from about

19% to 24%. Some initial difficulties in dissolving reproducible samples
turned out to be caused by improper cover liners on the wide mouth jars
used. The technique finally used consisted of adding powdered polymer
to solvent and warming and mixing the resulting suspension by rolling in
a sealed glass jar for about a week. The resulting solution showed

no sign of inhomogeneity.

Data had to be run within a day of loading the measurement
apparatus to keep the evaporation of solvent within acceptable bounds.
Of course, all solutions were kept in sealed jars during and after
mixing except while measurements were being taken. Tablei. lists the
solutions for which relaxation data was taken and the V-L function

subsequently calculated.

Table 1, Composition of Solutions

Designation Solute in 100cc of DEM
P-4 4.163 gm PMA (S-5522)
P-5 5.117 gn " L
E-20 20.012 gm Elvacite
E-23 23.086 gm m
E-25 25.012 gm L

3.3 Procedure

Solutions to be measured were sucked up with a barrel and
plunger device and then extruded ontc the lower plate of the torsional
apparatus. Great care was taken 1o inimize the number of air bubbles
introduced by this operation and tre material was allowed to stand for
several minutes after extrusion so that most of the air bubbles could
come to the surface and be removed. The upper (conical) plate was then
slowly lowered until the solution just began to extrude all around the
edge of the platens. Since about l5cc was a typical load of solution
and the radius of the platens was 3.61 cm., the spacing when the sample
just filled the space between the platens was typically of the order
of 3 millimeters. It was impossible to trim the excess sample which

15
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extruded because of its high elasticity. Probably, the chief source of
error in the measurements was the effect of this excess material.

All stress relaxation measurements on a given loading were
taken within a day to avoid effects caused by evaporation of solvent.
Measurements repeated within a day gave no systematic variations. Torque
and normal force were recorded simultaneously on a chart recorder during
relaxation. Data were then measured by hand from the recording chart
for a range of times from % sec up to as much as 30 seconds. It was
found that at least 15 minutes had to be allowed for relaxation to
equilibrium between runs in order to eliminate the effects of earlier

runs and to assure reproducible data.

It was necessary to do about six relaxations at each value of shear
in order to map out a complete relaxation. This is because different
sensitivities of the force and torque scales had to be used to get ac-
curate data on different parts of the relaxation curve. Considerable

patience was required.

Table 2, lists the values of maximum shear for which data
were taken for each solution

Table 2., Values of maximum shear for relaxation

measurements
Solution Maximum shears
P-4 3.12 5.72 9.u48 11.60 14.24 15.24 19.98
P-5 4.56 5.68 9.08 10.90 13.74 19.72
E~20 4.4y 5.36 7.60 9.14 12.40
E-23 2.82 3.68 5.42 6.54 7.36 8.68 9.78
E-25 3.70 4.72 6.72 8.66 11.28 11.62 14.26
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4.  CALCULATIONS

Figure 1 shows one plot of stress relaxation for solution P-5
at a maximum shear of 13.74, The maximum shear, Yy , is related to the
twist ¢ by

Ty VR (15)
T he plot is qualitatively representative of the data on any of the samples
at fixed shear. To obtain the data of this figure, five individual
relaxation experiments were done, each at the same fixed maximum shear
but with different settings of sensitivity on the torque and normal force
meters to measure overlapping sections of the curve. Error bars have
been drawn in at a few points to show how the accuracy of the data deterio-
rates for relaxation at long times. This problem results from electrical
and mechanical noise in the measurement system. An isochrone can be cons-
tructed from a set of such relaxation curves over a range of shears.
Figure 2 shows isochrones of torque for solutiion P-4 for times of relaxa-
tion ranging from one second to twenty seconds. These isochrones were
constructed by taking values of torque for some fixed time of relaxation
but at various shears and plotting them versus shear. The curves have
been drawn by eye. One can get an idea of the quality of the data from
Figure 2. The fact that we can draw smooth curves consistent with the
data is very reassuring (and vital to the project, as we shall see) because

this cross-plotting is very sensitive to errors.

The quantities T, and Ny of equations (9) and (10) are re-
lated to the slopes of the isochrones by the equations

oT aN
T,=R3=> N =R (16)
v Iy U 3y
We first attempted to estimate the slopes by a numerical method rather
than by taking them graphically from the plots. Given a sequence of
isochronous values of torque, for instance, arranged according to the
monotonically increasing shear, the slopes of the end points were taken

to be that of a straight line to the neighboring points in the sequence.
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For interior points, the slopes were taken as the averages of scopes
of such lines weighted by the inverse of the intervals to the next
points on the axis. With values of the isochrones and slopes of the

isochrones, the V-L function can be calculated from the equation

2 1
w'(h,t) = A=t — [2(k2—1)(2N+wNw) + 0%42) (viT

4 +3yT) ]
A 2mp“R (

¥ 17)

which can be derived from equations (9) and (10). In this equation
T and N are considered as functions of relaxation time and of twist.

For each twist two values of A can be calculated, viz.:

A= 1»;((\;»2R2+a);i * PR) (18)

Calculations of the V-L function with data treated only as described
above generated scattered points which did not determine a smooth curve.
The difficulty was eventually traced to insufficient smoothing of the
data. The term in N and its derivative in equation (17) is of opposite
sign but approximately the same magnitude as the term in T and its
derivative. Consequently, the calculation of the V-L function involves
the small difference between large quantities. What is more, these

large quantities themselves contain the calculated slopes of experimental
data. For this reason, very careful and sophisticated calculation methods

are required.

Ultimately, the following procedure was adapted. The raw data
points were plotted on logarithm plots and a smooth curve consistent
with the data was drawn by eye. The slopes of these curves at the values
of v of the data points were calculated graphically. The values of slope
for fixed y were then plotted versus relaxation times. By an iterative
process, the original data was smoothed until the calculated slopes for

fixed v also fell on a smooth curve systematically changing with

This process was necessarily a very tedicus one. Figure 3 shows the re-
sults for solution E-23 as a plot of the derivative of the V-L function
for four times of relaxation spaced logarithmically. In Figure 4 we show

18
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a part of one of the curves of Figure 3 plotted with the corresponding
results from the first numerical calculation of slopes. It is very clear
from these two figures that the complex and tedious procedure of treating
the raw data is necessary and sufficient to produce a reasonable plot of
the derivative of the V-L function.

Since the slope of the V-L function is negative for values of
A less than one, Figure 3 is a plot of the absolute value of the

derivative of the V-L function. By definition, this quantity is zero
at A of one so that there is a corresponding point at minus infinity
which cannot be shown. The smallest values for A 1less than one at
large relaxation times may still be showing "noise" in the plots of Figure
3. From a practical point of view, this is not serious since in calcul-
ations of stress the function plotted in the figure always appears in
combinations involving two values of A . For extensions, for instance,
there will be @ A greater than one as well as a A less than one.
In that case the "noise" of the A 1less than one will not seriously
affect the combination.

Table 3. gives a set of smoothed data used in calculating one

of the curves of Figure 3.

Table 3. Sample Smoothed Data for Solution E-23
at time two seconds

Yy T N slope log T slope log N wl w2

2.82 67 31.5 .663 1.35 .134 .0145
3.68 77 4u.6 .388 1.26 J111 .0097
5.42 82 70 .002 1.10 .064 .0133
6.54 81 85 -.131 .959 .049 .0113
7.36 79 95 -.249 .903 .039 .0115
8.68 76 109 -.335 .795 .030 .0098
9.78 73 118 -.410 .740 .02u .0085
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S. CONCLUSIONS AND RECOMMENDATIONS

A model of the mechanical behavior of polymer solutions has been formulated
which can be used to infer extensional properties from measurements of
shear. The model is consistent with our experience of measurements and

phenomena in shear,

Measurements of five solutions show promise for the practicality of

this technique but suggest that further experience is necessary.

There are practical experimental limitations in measuring stress relaxation
which limit the range of concentrations of a polymer solution which can
be measured. Therefore, methods of extrapolation in concentration need

to be worked out.

Very careful and complex treatment of the data is needed in order to
get good results. More efficient methods of accomplishing this treatment
should be worked out. If possible, a computer program should be developed

to accomplish this task.
The technique should be tested for its applicability to extensional flows.
For this purpose, theoretical and experimental studies of some convenient

extensional flow should eventually be initiated,

Ultimately, through measurements by the method proposed here, various

features of the V-L function selected from theoretical and experimental
considerations should be examined for their effect on the stability of

extensional flows. In this way, quantitative measurements can be

2 2

-
.
B
»
-~

4

correlated with data on breakup of je's.
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Raw Data for Solution P-4

11.6

15.54
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TORQUE

94
70
56.
47.
41.
36.
32.
29.
29
18
14,
11.
10
8
6.2

oo oero

w N

NORMAL FORCE

132
97
76.5
60.4
55
48.5
43.5
39.5

30

15.5
12.0

10

301
173
127
104
91
73

68.5

61
55

50.5

35
27
22

18.5
14.5

285
205
155
127.5
107.5
96.5
84.5
75
67.5
45
35.5
26.5
21.9
16.1
12.7

Torque in gram-centimeters, normal force in grams, time units at 0.472 seconds.

345

175

120
95
77
63
52
u5
39
35
21
15.
11.

575
360
265
226
182
152
132
113
99
60.
43.
33
27
19.
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Raw Data for Solution P-5§

CESRUSTONTV I N VL

shear 4.56 5.68 9.08 10.90 13.74 19.72
time units TORQUE
1 186 200 300 350 450 620
2 131 143 192 235 286 4]0
3 107 116 155 180 238 300
y 92 100 128 151 180 230
5 82 89 113 130 152 190
6 72.5 80 o4 114 130 160
7 68 71 93 101 117 142
8 63 65 84 91.5 105 127
9 58.5 61 77 83 95 112
10 55.5 58 71.5 77 87.5 100
15 42.4 L5 54 56 61 67
20 35.8 37.5 43.5 4p 47 47.5
25 31.6 32.5 36.5 39 36.5 35.8
30 27.8 29 32 34.5 31.6 29.2
4o 23.2 24.5 25.5 27.4 23.8 22.1
50 20.1 20.6 21 22.8 19.7 17.7
60 18.0 18.2 18.5 19.8 16.7 4.7
70 16.2 16.2 16.5 17.4 4.7 12.7
80 14.9 16 13.5 11.3
90 4.4 12.2 10.3
100 13.2 11.2 9.3
110 12.6 10.0 8.7
150 7.8
200 6.6
NORMAL FORCE
1 112 158
2 79 115 232 320 553 1110
3 65 97 190 260 413 780
) 56 8u 163 222 530 610
5 50 75 143 186 283 507
6 4g 67 128 162 243 427
7 42 62 114 145 216 372.5
8 39 57 105 130 19y 330
9 37 53.8 97.5 120 177 295
10 35 50.5 90.5 111 163 267.5
15 27.5 39 68.5 82 116 172
20 23 32.8 56 65 90 128
25 20 28 y7 56 73 103
30 17.5 25 41 49 61 84
40 14.3 19.6 33 38.5 46 62.5
50 12.3 16.6 28.3 32 37 49.5
60 10.6 lu.y 23.8 27.5 31 4]
70 9.5 12.8 21 25.5 27 35.5
80 11.4 22.8 23 28
90 20.5 21.5 24
100 18.8 19.7 21.5
110 17.2 17.9 19.5
150 13.3
200 10.3

Torque in gram-centimeters, normal force in grams, time units at 0.472 seconds.
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Raw Data for Solution E-20

shear 2.22 2.68 3.80 4.57 6.20
time units TORQUE

2 69 70 60 64 b4

3 41 38 37.5 38 36

4 27 2y 24.5 25 22

5 20 18 17.5 18 14.6
6 15.8 13 13.5 13.5 10.2
7 12.0 10 10.3 10.5 8.2
8 9.8 7.9 8.6 7.8 7.0
9 7.8 6.3 6.9 6.3 5.7
10 6.8 5.2 5.6 5.2 4.8
15 4.0 2.4 2.5 7.3 1.9
20 2.8 1.6 1.5 1.1
25 1.2

NORMAL FORCE

2 42 59 85 115 14k

3 32 34 48 57 70
Yy 23.2 22 29 34 43

5 15.6 15.5 20 24 31

6 11.7 10.8 15.5 17.5 22.5
7 8.6 8.8 12.0 13.4 18.5
8 6.8 6.8 9 10.4 13.5
9 5.3 5.4 8.2 8.0 10.5
10 4.0 by 5.8 6.4 8.5
15 1.8 1.8 2.4 2.6 3.5
20 0.8 0.8

25 0.4

Torque in gram-centimeters, normal force in grams, time units at 0.472 seconds.

Appendix B 32

S R I T T T A s IRt SRR RO




! 4_.‘.‘| L M » Ll Rttt R RIS I R e e e e A e e A PO S A
.
24 Raw Data for Solution E-23
" ’o
a2 shear 2.82 3.68 5.42 6.54 7.36 8.68 9.78
{: ! time units TORQUE
0 1 386 380 352
54 2 140 144 189 216 183 180 174
- 3 91 109 117 122 115 110 104
=5 Y 67 77 82 86 79 75 73
E 5 52 56 63 66 59 57 56
an 6 43 45 49 50 Y7 45 43
-~ 7 3u4.5 37 40 39 38 37 35
A 8 29 30 32 32.5 31.5 30 29
O 9 24.5 25.5 27 27.4 26.4 25 24
N 10 21.5 22.1 23.3 23.2 22.6 21.5 20
. 15 12 12 13.8 12.5 12.3 11.5 11
. 20 6.8 7.6 8.7 7.5 7.5 7.2 6.9
o 25 4.8 5.0 5.7 5.3 4.9 4.9 5.1
A 30 3.5 3.6 4.1 3.9 3.5 3.5 3.8
o 35 2.7 2.4 2.5 3.0 2.5 2.5 3.1
- : ]40 2 . ‘4 : 4
o’
A NORMAL, FORCE
R 1 140 203 390 505 750 940
L 2 69 107 166 206 235 280 300
}qﬁ 3 44,5 61.5 105 116 137 163 175
ot 4 31.5 44.8 70 82 9y 109 117
" 5 24 33.8 53.5 62.5 68 80 87
L 6 19 26.3 41 53.5 54.5 62 67
;{; 7 15.4 21.8 33 39 43 50 53
- 8 12.8 18 27.5 32.8 36.5 41 43.5
" 9 10.8 15.1 23.5 27.8 30.3 33 36.8
s 10 9.5 12.8 20.3 23.7 26 29 31.3
- 15 5 6.8 10.6 12.5 13.4 15.2 16.2
. 20 3.2 Y 6.7 7.6 8.3 9.2 10
o 25 2.2 3.8 ol ¥.9 5.4 6.2 6.6
N 30 1.5 1.9 3.1 3.6 3.7 4.4 4.8
e 35 1.1 1.5 2.3 2.6 2.6 3.2 3.4
< 40 1.9 2.7 2.6
St
1 .‘3'
.:;)
N . . . o
::: Torque in gram-centimeters, normal force in grams, time units at 0.472 seconds.
(v
o
L
s
-':'3
,n:,-' Appendix B 33
50
oy
o
i
0
P
e o S e T e e S e N N e )

‘ o‘.'~'. - .;_- “'-{{';.;_-.:_,‘:...;_..:_‘\' .:.-_:_- -(..;.. MUY '...:_.‘;..;.. -...-_.‘-. - . n-‘ e

()



L)
.

X { L

Ny,
[

o, e,

Raw Data for Solution E-24
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Appendix B
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1.85 2.36 3.36 4.33 5.64 5.81 7.13
time units TORQUE
318 3u8 368 390 385 374 356
218 232 254 276 255 240 232
163 184 191 194 187 182 162
130 142 153 150 146 135 123
108 115 124 120 115 107 98
92 97 103 100 93 89 80
78 82 90 84 80 73. 67
67 72 75 73 70 65 58
59 62 66 64 60.5 56 50
35.4 37 38 36 35.0 33 29
24.2 24.8 25.5 25 22.3 22 21
17.8 17.2 19 18 16.8 16 14.8
13.0 14.5 14 13.0 12.3 11.0
10 11.5 11.4 10.8 9.8 9.0
10.8 9.0 8.0
NORMAL FORCE
210 280 533 610 700 875 1060
135 13y 328 398 452 520 590
101 142 230 288 317 358 398
80 110 178 215 237 265 290
64.5 89 140 174 190 207 227
54.3 73.5 119 143 155 169 183
45.9 62 108 120 130 14l 158
39.3 53.5 86 102 111 121 136
34.3 47 4 98 97.5 107 118
19.4 26.5 y2 49 54.8 60.5 65
12.5 17 27 32 34.8 38.5 42
8.5 11.8 18.5 22.5 24.3 27 29
8.3 13 16.3 17.3 20 21.5
10 12.3 13.3 15 16.5
9.5 10.0 11

Torque in gram-centimeters, normal force in grams, time units at 0.472 seconds.
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